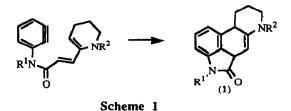
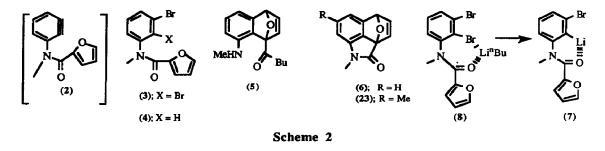


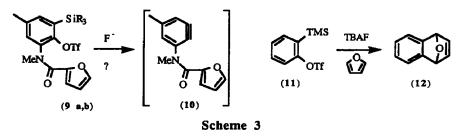
0040-4039(94)E0635-B


A Novel Approach To Polycyclic Indolic Systems

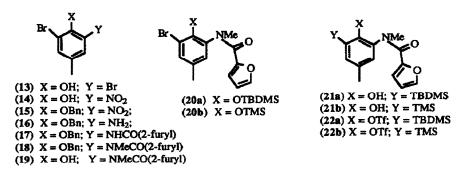
Ian R. Hardcastle, Ruth F. Hunter and Peter Quayle*


Department of Chemistry, The Victoria University of Manchester Manchester M13 9PL, UK Phillip N. Edwards Zeneca Pharmaceuticals Alderley Park Macclesfield SK10 4TG, UK.

Abstract:- An intramolecular Diels-Alder strategy has been developed for the synthesis of polycyclic oxindole-containing systems.


The development of new synthetic routes to indolic systems continues to be an active area of interest.¹ Whereas there are numerous² examples of IMDA reaction of alkenes with suitably functionalised dienes, there exist few reports³ of the analogous IMDA reactions of arynes. Our efforts in this area have centred upon the development of a mild method for the generation of highly reactive intermediates, which upon reaction with a suitably functionalised diene would afford the functionalised ergot skeleton (1) in a single step, Scheme 1. The results of our initial efforts in this area are documented in this *Letter*.

Initial attempts to prepare the functionalised aryne (2) using transmetallation-fragmentation procedures were largely unsuccessful. Treatment of the readily available^{4,5} furanamide (3) with ⁿBuLi (2.2eq) in THF: ether (1:1: -78 °C to ambient) merely afforded the mono-bromide (4) in moderate isolated yield⁶ (42%). Repeating the reaction at lower temperatures (-78 °C) using a limited quantity of ⁿBuLi (1.1eq) again afforded the mono-bromide (4) as the major product (52%), with concomitant formation of the ketone (5) in low yield (7%). Formation of the ketone (5) presumably arose *via* the initial formation of the adduct (6), followed by nucleophilic attack at the activated amide carbonyl group. Attempts to optimize the generation of the ketone (5) or the adduct (6) met with failure. The regioselectivity observed of the halogen-metal exchange and unusual stability of the intermediate (7) towards fragmentation may be ascribed to the initial formation of an amide - ⁿbutyl lithium complex⁷ (8) which gave rise to the formation of the stable, chelated intermediate⁸ (7) upon halogen-metal exchange (Scheme 2).


In an effort to effect the desired fragmentation step under milder reaction conditions, we considered that the silyl triflates (9a,b) would serve as ideal precursors to the required aryne intermediate (10). Kobayashi⁹ has reported that the silyl triflate (11) undergoes a fluoride induced fragmentation, at or near ambient temperature, and under essentially neutral reaction conditions, to afford benzyne, which can be trapped with furan to afford the adduct (12) in high yields, Scheme 3. We¹⁰ and others¹¹ have subsequently shown this to be a mild method for the generation of benzynes, although few synthetic applications of this process have been reported to date.

Conversion¹² of the readily available phenol (13) to the mono-nitro compound (14) (NaNO2/AcOH; 86%) and protection (PhCH2Br/NaOH/MeOH/reflux; 60%) afforded the ether (15), which was cleanly reduced¹³ to the aniline (16) using "NaSH" (Na2S (1.7eq) NaHCO3/MeOH/H₂O; 40 min; 82%) on a multigram scale. Acylation of the aniline (16) with 2-furoyl chloride (1.1eq; Et₃N (1.1eq), 0 °C to ambient) afforded the amide (17) (72%), which upon N-methylation (NaH (1.3eq), THF; MeI (25eq); (18) 87%) and subsequent deprotection ((i)BCl₃(2.5eq); CH₂Cl₂;-10 °C; (ii) MeOH; 92%) afforded the phenol (19) as a white crystalline solid (m.p. 189-90 °C).

Conversion of the phenol (19) to the crystalline silyl ether (20a) (NaH; THF; TBDMSCl, 0 °C; 87%) and metallation (^tBuLi (2.2eq); THF; -78 °C; 3 hours) afforded the rearranged silane¹⁴ (21a) in excellent yield (93%). Unfortunately, all attempts to convert (21a) to the triflate (22a) met with failure, presumably due to adverse steric interactions. Silylation of the phenol (19) (NaH; TMSCl (5eq); THF; yield of (20b) ~100%), metallation (^tBuLi (2.2eq); -78 °C; 30 min) and subsequent 1,3-silatropic rearrangement¹⁴ afforded the phenol (21b) as a white crystalline solid (m.p. 159 °C; 90%). After some experimentation, conversion of the phenol

(21b) to the pivotal intermediate (22b) was achieved under carefully controlled conditions ((CF3SO2)2O (3eq); pyridine (12eq); DMAP (2eq) in CH2Cl2 at -20 °C;) in 63% yield after "flash" chromatography.

Having developed a route to the key intermediate (22b), the crucial aryne generation step was attempted. Remarkably, addition of TBAF (1.25eq in THF) to a solution of (22b) in redistilled acetonitrile (2.4 x 10⁻² M. soln.) at room temperature (2 hours) afforded the highly unstable adduct (23) in essentially quantitative yield. Confirmation of the identity of the product was secured on the basis of 'H nmr, ir and mass spectroscopy. Irradiation of H_b (δ 7.29 ppm; dd; J = 6.25; 2.5 Hz) caused Hc (δ 5.83 ppm; d; J = 2.5Hz) and Ha (δ 7.16 ppm; d; J = 6.25Hz) to collapse to singlets. In addition, irradiation of He singlet at δ 6.89 ppm (Hd) caused a 9.0% enhancement of the doublet at δ 5.83 ppm (Hc), whereas irradiation of H_c produced an 8% enhancement of H_d and a 9% enhancement of H_b (Figure 1). Finally, the adduct (23) exhibited a high carbonyl stretching frequency (γ_{max} 1720 cm⁻¹) in the infra-red spectrum, characteristic of a strained amide carbonyl, and produced a molecular ion in the mass spectrometer (C13H11NO2 requires 213.0790; found 213.0793).

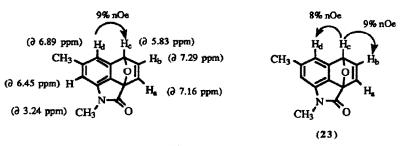


Figure 1

From a mechanistic stand-point, molecular models would indicate that cycloaddition of the highly reactive intermediate (10) to the strained system (23) proceedsvia an asynchronous transition state^{2b,15} or a diradical intermediate¹⁶ (Figure 2), rather than by a truly concerted process.

Figure 2

This sequence clearly illustrates the potential advantage of the Kobayashi fragmentation over alternate methods of aryne generation. The synthetic utility of this rather uncommon cycloaddition sequence will be the subject of further reports.

Acknowledgements

One of us (R. F. H.) thanks the SERC for the provision of a CASE studentship; IRH thanks The Victoria University of Manchester for provision of a Samuel Greatrix Research Studentship. We thank Zeneca Pharmaceuticals for generous support of our work.

REFERENCES AND NOTES

- Rosen, T.; Nagel, A. A.; Rizzi, J. P. Synlett, 1991, 213.
- 2. a). Fallis, A. G. Can. J. Chem., 1984, 62, 183; Ciganek, E. G. Organic Reactions, 32, 1; b). D. Craig, D. Chem. Soc. Rev., 1987, 16, 187.
- 3. Longone, D. T.; Gladysz, J. A. Tetrahedron Letters, 1976, 4559; Mori, N.; Takemura, T; Congorac, D. 1., Chauysz, J. A. Lett anear on Letters, 1570, 4559; Mori, N.; Takemura, I; Gladysz, J. A. J. Chem. Soc., Chem. Commun., 1988, 575; Best, W. M.; Wege, D. Tetrahedron Letters, 1981, 22, 4877; Aust. J. Chem., 1986, 39, 635; Houlihan, W. J.; Vike, Y.; Parino, V. A. J. Org. Chem., 1981, 46, 4515; Darlington, W. H.; Smuscovich, J. Tetrahedron Letters, 1988, 29, 1991; Chem., 1981, 46, 4515; Darlington, W. H.; Smuscovich, J. Tetrahedron Letters, 1988, 29, 1831; Esteves, J. C.; Esteves, R. J.; Quitian, E.; Villaverde, M; Castedo, M.; Castedo, L. Tetrahedron Letters, 1989, 30, 5785.
- Prepared in two steps from 2,3-dibromoaniline^a ((a) Liedholm, B. Acta. Chem. Scand., 1984, B38, 4. 877):- (i) 2,3-dibromoaniline, 2-furanoyl chloride (l eq.), HCl (excess), NaOAc; 88%; (ii) NaH, THF, MeI: 88%.
- All new compounds were fully characterised by ¹H nmr, ir, high resolution mass spectroscopy and/or 5. combustion microanalysis.
- Identical to an authentic sample prepared from 3-bromoaniline. 6.
- For a recent example see Beak, P.; Musick, T. J.; Liu, C.; Cooper, T.; Gallagher, D. J. J. Org. 7. Chem., 1993, 58, 7330.
- For the preparation of stable o-lithiohaloarenes see Iwao, M. J. Org. Chem., 1990, 55, 3622. The 8. anion (7) may be intercepted with a variety of electrophiles, e.g. TMSCl, affording the silane (24) in 63% yield:-

$$(i) nBuLi / -78 °C$$

$$(i) nBuLi / -78 °C$$

$$(ii) TMSCl$$

$$(ii) TMSCl$$

$$(ii) (ii) TMSCl$$

$$(24)$$

- Himeshima, Y.; Sonoda, T.; Kobayashi, T. Chem. Letters, 1983, 1211. Hunter, R. F.; Quayle, P. Unpublished observations. 9.
- 10.
- 11. Shankaran, K.; Snieckus, V. Tetrahedron Letters, 1984, 25, 2827.
- Railford, L. J. Am. Chem. Soc., 1919, 41, 2068. Porter, K. Organic Reactions, 1973, 20, 455. 12.
- 13.
- Simchen, G.; Pfletschinger, J. Angew. Chem., Intl. Edn. Engl., 1976, 15, 428. 14.
- 15. For a discussion see Dewar, M. J. S.; Pierlini, A. B. J. Am. Chem. Soc., 1984, 106, 203.
- 16. see Houk, K. N.; Li, Y.; Evanseck, J. D. Angew. Chem., Int. Edn. Engl., 1992, 31, 682 and refs. therein.

(Received in UK 14 January 1994; revised 15 March 1994; accepted 29 March 1994)